Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 32(2): 107898, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668237

RESUMO

The accumulation of misfolded proteins is associated with multiple neurodegenerative disorders, but it remains poorly defined how this accumulation causes cytotoxicity. Here, we demonstrate that the Cdc48/p97 segregase machinery drives the clearance of ubiquitinated model misfolded protein Huntingtin (Htt103QP) and limits its aggregation. Nuclear ubiquitin ligase San1 acts upstream of Cdc48 to ubiquitinate Htt103QP. Unexpectedly, deletion of SAN1 and/or its cytosolic counterpart UBR1 rescues the toxicity associated with Cdc48 deficiency, suggesting that ubiquitin depletion, rather than compromised proteolysis of misfolded proteins, causes the growth defect in cells with Cdc48 deficiency. Indeed, Cdc48 deficiency leads to elevated protein ubiquitination levels and decreased free ubiquitin, which depends on San1/Ubr1. Furthermore, enhancing free ubiquitin levels rescues the toxicity in various Cdc48 pathway mutants and restores normal turnover of a known Cdc48-independent substrate. Our work highlights a previously unappreciated function for Cdc48 in ensuring the regeneration of monoubiquitin that is critical for normal cellular function.


Assuntos
Homeostase , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Morte Celular , Proteína Huntingtina/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Proteína com Valosina/genética
2.
PLoS One ; 13(1): e0191490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29346421

RESUMO

The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington's disease. We previously found that the degradation of mutated Htt with polyQ expansion (Htt103QP) depends on both ubiquitin proteasome system and autophagy. However, the role of heat shock proteins in the clearance of mutated Htt remains poorly understood. Here, we report that cytosolic Hsp70 (Ssa family), its nucleotide exchange factors (Sse1 and Fes1), and a Hsp40 co-chaperone (Ydj1) are required for inclusion body formation of Htt103QP proteins and their clearance via autophagy. Extended induction of Htt103QP-GFP leads to the formation of a single inclusion body in wild-type yeast cells, but mutant cells lacking these HSPs exhibit increased number of Htt103QP aggregates. Most notably, we detected more aggregated forms of Htt103QP in sse1Δ mutant cells using an agarose gel assay. Increased protein aggregates are also observed in these HSP mutants even in the absence Htt103QP overexpression. Importantly, these HSPs are required for autophagy-mediated Htt103QP clearance, but are less critical for proteasome-dependent degradation. These findings suggest a chaperone network that facilitates inclusion body formation of misfolded proteins and the subsequent autophagic clearance.


Assuntos
Autofagia , Proteínas de Choque Térmico/metabolismo , Proteína Huntingtina/genética , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...